题目内容

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=CD=PD,E,F,G分别为线段PC,PD,BC的中点,现将△PDC折起,使点P∉平面ABCD.求证:PA∥面EFG.
考点:直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:证明EF∥平面PAB,同理EG∥平面PAB,从而得到平面PAB∥平面EFG,而PA在平面PAB内,故有PA∥平面EFG.
解答: 证明:∵PE=EC,PF=FD,故EF是△PDC的中位线,∴EF∥CD.  
又 CD∥AB,∴EF∥AB,
∴EF∥平面PAB,同理EG∥平面PAB. 
∵EF∩EG=E,∴平面PAB∥平面EFG,而PA在平面PAB内,
∴PA∥平面EFG.
点评:本题考查证明线面平行的方法,考查直线和平面平行的判定定理的应用,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网