题目内容
在数列{an}中,已知a1=1,an+2=
,a100=a96,则a15+a16= .
| 1 |
| an+1 |
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:利用a1=1,an+2=
,a100=a96,分别求出a15、a16,则可求a15+a16.
| 1 |
| an+1 |
解答:
解:由a1=1,an+2=
,
得a3=
,a5=
=
,a7=
=
,
a9=
=
,a11=
,a13=
,a15=
,
∵an+2=
,a100=a96,
∴a100=a96=
=
,
即a962+a96-1=0,
解得a96=
,
∴a94=
,…a16=
,
∴a15+a16=
+
=
,
故答案为:
| 1 |
| an+1 |
得a3=
| 1 |
| 2 |
| 1 | ||
|
| 2 |
| 3 |
| 1 | ||
|
| 3 |
| 5 |
a9=
| 1 | ||
|
| 5 |
| 8 |
| 8 |
| 13 |
| 13 |
| 21 |
| 21 |
| 34 |
∵an+2=
| 1 |
| an+1 |
∴a100=a96=
| 1 |
| a98+1 |
| 1 | ||
|
即a962+a96-1=0,
解得a96=
-1±
| ||
| 2 |
∴a94=
-1±
| ||
| 2 |
-1±
| ||
| 2 |
∴a15+a16=
| 21 |
| 34 |
-1±
| ||
| 2 |
4±17
| ||
| 34 |
故答案为:
4±17
| ||
| 34 |
点评:本题主要考查数列递推公式的应用,根据递推公式分别求出a15,a16的值是解决本题的关键,综合性较强,难度较大.
练习册系列答案
相关题目
已知函数y=f(x)在R上为偶函数,当x≥0时,f(x)=log3(x+1),若f(t)>f(2-t),则实数t的取值范围是( )
| A、(-∞,1) | ||
| B、(1,+∞) | ||
C、(
| ||
| D、(2,+∞) |