题目内容

19.空气污染,又称为大气污染,当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量
状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为
100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染; 2015年1月某日某省x个监测0点数据统计如下:
空气污染指数
(单位:μg/m3
[0,50](50,100](100,150](150,200]
监测点个数1540y15
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)统计部门从该省空气质量“良好”和“轻度污染”的两类监测点中采用分层抽样的方式抽取了7个监测点,省环保部门再从中随机选取3个监测点进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列.

分析 (Ⅰ)由题意得0.003×50=$\frac{15}{x}$,15+40+y+15=x,由此能求出x,y,进而能完成频率分布直方图.
(Ⅱ)空气良好有$\frac{7}{40+30}×40=4$个,轻度污染有$\frac{7}{40+30}×30=3$个,ξ的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列.

解答 解:(Ⅰ)由题意得0.003×50=$\frac{15}{x}$,解得x=100,
又15+40+y+15=100,解得y=30.
∵$\frac{40}{100×50}$=0.008,$\frac{30}{100×50}=0.006$,$\frac{15}{100×50}=0.003$,
∴完成频率分布直方图,如下图:

(Ⅱ)空气良好有$\frac{7}{40+30}×40=4$个,轻度污染有$\frac{7}{40+30}×30=3$个,
ξ的所有可能取值为0,1,2,3,
P(ξ=0)=$\frac{{C}_{3}^{3}}{{C}_{7}^{3}}$=$\frac{1}{35}$,
P(ξ=1)=$\frac{{C}_{4}^{1}{C}_{3}^{2}}{{C}_{7}^{3}}$=$\frac{12}{35}$,
P(ξ=2)=$\frac{{C}_{4}^{2}{C}_{3}^{1}}{{C}_{7}^{3}}$=$\frac{18}{35}$,
P(ξ=3)=$\frac{{C}_{4}^{3}{C}_{3}^{0}}{{C}_{7}^{3}}$=$\frac{4}{35}$,
∴ξ的分布列为:

 ξ 0 1 2 3
 P $\frac{1}{35}$ $\frac{12}{35}$ $\frac{18}{35}$ $\frac{4}{35}$

点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列的求法,是基础题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网