题目内容

13.已知函数f(x)=3sin(3x+φ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有(  )
A.2个B.3个C.4个D.5个

分析 令f(x)=2,得sin(3x+φ)=$\frac{2}{3}$,根据x∈[0,π],求出3x+φ的取值范围,根据正弦函数的图象与性质,可得出函数y=f(x)的图象与直线y=2的交点最多有4个.

解答 解:令f(x)=3sin(3x+φ)=2,
得sin(3x+φ)=$\frac{2}{3}$∈(-1,1),
又x∈[0,π],∴3x∈[0,3π],
∴3x+φ∈[φ,3π+φ];
根据正弦函数的图象与性质,可得
该方程在正弦函数一个半周期上最多有4个解,
即函数y=f(x)的图象与直线y=2的交点最多有4个.
故选:C.

点评 本题主要考查了函数图象交点个数的判断问题,利用函数和方程之间的关系,进行求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网