题目内容

4.已知函数f(x)=xlnx+$\frac{a}{x}$(a∈R).
(1)当a=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求证:当a≥1,f(x)≥1.

分析 (1)求出函数f(x)的导数,计算f(1),f′(1),求出切线方程即可;
(2)求出函数f(x)的导数,根据函数的单调性求出f(x)的最小值是f(1),证明结论即可.

解答 解:(1)a=0时,f(x)=xlnx,(x>0),
f′(x)=lnx+1,f′(1)=1,f(1)=0,
故切线方程是:y=x-1;
即x-y-1=0.
(2)证明:f(x)=xlnx+$\frac{a}{x}$,(x>0),
f′(x)=lnx+1-$\frac{a}{{x}^{2}}$,f″(x)=$\frac{1}{x}$+$\frac{2a}{{x}^{3}}$>0,
故f′(x)在(0,+∞)递增,
而f′(1)=1-a≤0,
故f(x)在(0,1)递减,在(1,+∞)递增,
故 f(x)≥f(1)=a≥1.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网