题目内容

已知m,n,l为不同的直线,α,β为不同的平面,则下列四个命题正确的是(  )
A、m,n为异面直线,m∥α,n∥α,且l⊥m,l⊥n,则l⊥α
B、若m∥α,且n⊥m,则有n⊥α
C、若α⊥β,m∥n,n⊥β,则m∥α
D、m与α相交但不垂直,则与直线m平行的平面不可能与平面α垂直
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:m,n为异面直线,m∥α,n∥α,且l⊥m,l⊥n,
则由直线与平面垂直的判定定理得l⊥α,故A成立;
若m∥α,且n⊥m,则有n与α相交、平行或n?α,故B错误;
若α⊥β,m∥n,n⊥β,则m∥α或m?α,故C错误;
m与α相交但不垂直,则与直线m平行的平面有可能与平面α垂直,故D错误.
故选:A.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网