题目内容

函数y=sinx-cos2x的值域为
 
考点:三角函数的最值,同角三角函数基本关系的运用
专题:三角函数的图像与性质
分析:根据三角函数的图象和性质结合一元二次函数的图象和性质即可得到结论.
解答: 解:y=sinx-cos2x=sinx+sin2x-1=(sinx+
1
2
2-
5
4

∵-1≤sinx≤1,
∴当sinx=-
1
2
时,函数取得最小值为-
5
4

当sinx=1时,函数取得最大值为1,
故-
5
4
≤y≤1,
故函数的值域为[-
5
4
,1],
故答案为:[-
5
4
,1]
点评:本题主要考查函数值域的求解,根据同角的三角函数的关系式,以及一元二次函数的性质是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网