题目内容
已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项,给出下列三个结论:
①数列0,2,4,6具有性质P;
②若数列A具有性质P,则a1=0;
③若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2.
其中,正确结论的个数是( )
①数列0,2,4,6具有性质P;
②若数列A具有性质P,则a1=0;
③若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2.
其中,正确结论的个数是( )
| A、3 | B、2 | C、1 | D、0 |
考点:数列的应用
专题:综合题,等差数列与等比数列
分析:本题是一种重新定义问题,要我们理解题目中所给的条件,解决后面的问题,把后面的问题挨个验证,发现正确结论写到横线上.
解答:
解:①数列0,2,4,6,aj+ai与aj-ai(1≤i≤j≤3)两数中都是该数列中的项,
并且a4-a3=2是该数列中的项,故①正确;
②若数列{an}具有性质P,去数列{an}中最大项an,则an+an=2an与an-an=0两数中至少有一个是该数列中的一项,而2an不是该数列中的项,
∴0是该数列中的项,
又由0≤a1≤a2…≤an,
∴a1=0;故②正确;
③∵数列a1,a2,a3具有性质P,0≤a1<a2<a3,
∴a1+a3与a3-a1至少有一个是该数列中的一项,且a1=0,
1°若a1+a3是该数列中的一项,则a1+a3=a3,
∴a1=0,易知a2+a3不是该数列的项
∴a3-a2=a2,∴a1+a3=2a2.
2°若a3-a1是该数列中的一项,则a3-a1=a1或a2或a3,
①若a3-a1=a3同1°,
②若a3-a1=a2,则a3=a2,与a2<a3矛盾,
③a3-a1=a1,则a3=2a1,
综上a1+a3=2a2.故③正确.
故选:A.
并且a4-a3=2是该数列中的项,故①正确;
②若数列{an}具有性质P,去数列{an}中最大项an,则an+an=2an与an-an=0两数中至少有一个是该数列中的一项,而2an不是该数列中的项,
∴0是该数列中的项,
又由0≤a1≤a2…≤an,
∴a1=0;故②正确;
③∵数列a1,a2,a3具有性质P,0≤a1<a2<a3,
∴a1+a3与a3-a1至少有一个是该数列中的一项,且a1=0,
1°若a1+a3是该数列中的一项,则a1+a3=a3,
∴a1=0,易知a2+a3不是该数列的项
∴a3-a2=a2,∴a1+a3=2a2.
2°若a3-a1是该数列中的一项,则a3-a1=a1或a2或a3,
①若a3-a1=a3同1°,
②若a3-a1=a2,则a3=a2,与a2<a3矛盾,
③a3-a1=a1,则a3=2a1,
综上a1+a3=2a2.故③正确.
故选:A.
点评:考查数列的综合应用,此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属中档题.
练习册系列答案
相关题目
对任意实数a,b定义运算“?”:a?b=
,设f(x)=(x2-1)?(4+x),若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是( )
|
| A、(-2,1) |
| B、[0,1] |
| C、[-2,0) |
| D、[-2,1) |
已知全集为R,集合M={x|x2-6x+8≤0},N={x|2x≥1},则(∁RM)∩N=( )
| A、{x|x≤0} |
| B、{x|2≤x≤4} |
| C、{x|0<x≤2或x≥4} |
| D、{x|0≤x<2或x>4} |
不等式x(x+2)<3的解集是( )
| A、{x|-3<x<1} |
| B、{x|-1<x<3} |
| C、{x|x<-3,或x>1} |
| D、{x|x<-1,或x>3} |
已知函数f(x)=
则方程f(x)=ax恰有两个不同的实根时,实数a的取值范围是(注:e为自然对数的底数)( )
|
| A、(-1,0) | ||||
B、(-1,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,
|
设l、m是两条不同的直线,α、β是两个不同的平面,则下列论述正确的是( )
| A、若l∥α,m∥α,则l∥m |
| B、若l∥α,l∥β,则α∥β |
| C、若l∥m,l⊥α,则m⊥α |
| D、若l∥α,α⊥β,则l⊥β |
A,B,C是球O的一个截面的内接三角形的三个顶点,其中AB=
,∠C=30°,球心O到该截面的距离等于球半径的一半,则球O的表面积是( )
| 3 |
| A、18π | B、16π |
| C、14π | D、12π |