题目内容
已知|
|=1,
•
=
,(
+
)•(
-
)=
,求:
(1)
与
的夹角;
(2)
+
与
-
的夹角的余弦值.
| a |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
(1)
| a |
| b |
(2)
| a |
| b |
| a |
| b |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)(2)利用向量数量积运算和向量夹角公式即可得出.
解答:
解:(1)∵(
+
)•(
-
)=|
|2-|
|2=
,
∵|
|=1,∴|
|=
.
设
与
的夹角为θ,
则cosθ=
=
=
,
∵θ∈[0,π],
∴θ=
.
(2)(
-
)2=
2-2
•
+
2=1-2×
+
=
,
∴|
-
|=
.
(
+
)2=
2+2
•
+
2=1+2×
+
=
,
∴|
+
|=
,
设
-
,
+
的夹角为α,
则cosα=
=
=
.
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
∵|
| a |
| b |
| ||
| 2 |
设
| a |
| b |
则cosθ=
| ||||
|
|
| ||||
1×
|
| ||
| 2 |
∵θ∈[0,π],
∴θ=
| π |
| 4 |
(2)(
| a |
| b |
| a |
| a |
| b |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴|
| a |
| b |
| ||
| 2 |
(
| a |
| b |
| a |
| a |
| b |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
∴|
| a |
| b |
| ||
| 2 |
设
| a |
| b |
| a |
| b |
则cosα=
(
| ||||||||
|
|
| ||||||||
|
| ||
| 5 |
点评:本题考查了向量数量积运算和向量夹角公式,属于基础题.
练习册系列答案
相关题目