题目内容
在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.
考点:三角形的形状判断,正弦定理
专题:计算题,解三角形
分析:利用三角形中,sinB=sin(A+C)可求得sinB=sinAcosC+cosAsinC,与已知sinA+sinB=sinC•(cosA+cosB)联立,可求得cosC(sinB+sinA)=0,从而可判断△ABC的形状.
解答:
解:∵sinB=sin[180°-(A+C)]=sin(A+C)=sinAcosC+cosAsinC,
又∵sinA+sinB=sinC•(cosA+cosB),
∴sinA+sinAcosC+cosAsinC=sinCcosA+sinCcosB,
∴sinA=sinCcosB-sinAcosC,
在△ABC中,sinA=sin(B+C),
∴sin(B+C)=sinCcosB-sinAcosC,即sinBcosC+cosBsinC=sinCcosB-sinAcosC,
∴cosC(sinB+sinA)=0,
∵sinB>0,sinA>0,
∴cosC=0,
∴a2+b2=c2,
∴△ABC是直角三角形.
又∵sinA+sinB=sinC•(cosA+cosB),
∴sinA+sinAcosC+cosAsinC=sinCcosA+sinCcosB,
∴sinA=sinCcosB-sinAcosC,
在△ABC中,sinA=sin(B+C),
∴sin(B+C)=sinCcosB-sinAcosC,即sinBcosC+cosBsinC=sinCcosB-sinAcosC,
∴cosC(sinB+sinA)=0,
∵sinB>0,sinA>0,
∴cosC=0,
∴a2+b2=c2,
∴△ABC是直角三角形.
点评:本题考查三角形的形状判断,着重考查两角和的正弦,求得cosC(sinB+sinA)=0是转化的关键,属于中档题.
练习册系列答案
相关题目
定义:min{a,b}=
,在区域
内任取一点P(x,y),则x、y满足min{x2+x+2y,x+y+4}=x2+x+2y的概率为( )
|
|
A、
| ||
B、
| ||
C、
| ||
D、
|
直线l:y=k(x-
)与双曲线x2-y2=1仅有一个公共点,则实数k的值为( )
| 2 |
| A、1 | B、-1 |
| C、1或-1 | D、1或-1或0 |