题目内容
3.在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$.(1)将圆C的极坐标方程化为直角坐标方程;
(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.
分析 (1)圆C的极坐标方程为ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$,展开可得:ρ2=4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ-sinθ),利用互化公式即可得出直角坐标方程.
(2)直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入上述方程可得:t2+2$\sqrt{2}$t-4=0.$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$.
解答 解:(1)圆C的极坐标方程为ρ=4$\sqrt{2}cos(θ+\frac{π}{4})$,展开可得:ρ2=4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ-sinθ),
可得直角坐标方程:x2+y2-4x+4y=0.
(2)直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入上述方程可得:t2+2$\sqrt{2}$t-4=0.
t1+t2=-2$\sqrt{2}$,t1t2=-4,
则$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{8-4×(-4)}}{4}$=$\frac{\sqrt{6}}{2}$.
点评 本题考查了极坐标方程化为参数方程、参数方程化为普通方程及其应用、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.
| A. | 8 | B. | 9 | C. | 10 | D. | 11 |
| A. | {1,2,3,4} | B. | {3,4} | C. | {1,6} | D. | {5,6} |
| A. | [$\frac{7π}{12}$,$\frac{13π}{12}$) | B. | [$\frac{π}{2}$,π) | C. | [$\frac{π}{6}$,$\frac{π}{2}$) | D. | [$\frac{π}{6}$,$\frac{π}{3}$] |