题目内容
17.数列{2n-1}的前n项1,3,7,…,2n-1组成集合${A_n}=\left\{{1,3,7,{2^n}-1}\right\}$(n∈N*),从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),记Sn=T1+T2+…+Tn,例如当n=1时,A1={1},T1=1,S1=1;当n=2时,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,试写出Sn=${2}^{\frac{n(n+1)}{2}}$-1.分析 通过计算出S3,并找出S1、S2、S3的共同表示形式,进而利用归纳推理即可猜想结论.
解答 解:当n=3时,A3={1,3,7},
则T1=1+3+7=11,T2=1×3+1×7+3×7=31,T3=1×3×7=21,
∴S3=T1+T2+T3=11+31+21=63,
由S1=1=21-1=${2}^{\frac{1×2}{2}}$-1,
S2=7=23-1=${2}^{\frac{2×3}{2}}$-1,
S3=63=26-1=${2}^{\frac{3×4}{2}}$-1,
…
猜想:Sn=${2}^{\frac{n(n+1)}{2}}$-1,
故答案为:${2}^{\frac{n(n+1)}{2}}$-1.
点评 本题考查数列的通项及前n项和,考查归纳推理,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
2.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,则f($\frac{3}{2}$)=( )
| A. | $\sqrt{e}$ | B. | $\sqrt{e^3}$ | C. | $\root{3}{e^2}$ | D. | $\root{3}{e}$ |
9.某个体服装店经营某种服装在某周内获得利润y(单位:元)与该周每天销售这种服装件数x之间有如下一组数据:
已知$\sum_{i=1}^7{x_i^2=280,}\sum_{i=1}^7{{x_i}{y_i}=3487}$
(1)求$\overline x,\overline y$;
(2)求纯利润y与每天销售件数x的回归方程;
(3)估计每天销售10件这种服装时,纯利润是多少元?
| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline x,\overline y$;
(2)求纯利润y与每天销售件数x的回归方程;
(3)估计每天销售10件这种服装时,纯利润是多少元?
6.过四条两两平行的直线中的两条最多可确定的平面个数是( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |