题目内容

15.已知a,b,c分别为△ABC的三个内角A,B,C的对边,c=2,且sin2A+sin2B=sinAsinB+sin2C,则△ABC面积的最大值为(  )
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

分析 利用正余弦定理化简,求出C角的大小,利用基本不等式求解即可.

解答 解:∵sin2A+sin2B=sinAsinB+sin2C,
由正弦定理可得:a2+b2=ab+c2
则cosC=$\frac{a^2+b^2-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴C=$\frac{π}{3}$.
∵c=2,
∴a2+b2=ab+4,
可得ab+4≥2ab,解得ab≤4.(当且仅当a=b时取等号)
那么:△ABC面积$S=\frac{1}{2}absinC$$≤\frac{1}{2}×4×sin\frac{π}{3}=\sqrt{3}$.
故选C.

点评 本题考查了正余弦定理化简计算能力和基本不等式的运用求最值问题.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网