ÌâÄ¿ÄÚÈÝ
3£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©| A£® | Èôx£¬y¡ÊR£¬ÇÒ$\left\{\begin{array}{l}{x+y£¾4}\\{xy£¾4}\end{array}\right.$£¬Ôò$\left\{\begin{array}{l}{x£¾2}\\{y£¾2}\end{array}\right.$ | |
| B£® | ÉèÃüÌâp£º?x£¾0£¬x2£¾2x£¬Ôò©Vp£º?x0¡Ü0£¬x02¡Ü2${\;}^{{x}_{0}}$ | |
| C£® | ¡÷ABCÖУ¬A£¾BÊÇsinA£¾sinBµÄ³ä·Ö±ØÒªÌõ¼þ | |
| D£® | ÃüÌâ¡°Èôa=-1£¬Ôòf£¨x£©=ax2+2x-1Ö»ÓÐÒ»¸öÁãµã¡±µÄÄæÃüÌâÎªÕæ |
·ÖÎö A£¬Èôx£¬y¡ÊR£¬ÇÒ$\left\{\begin{array}{l}{x+y£¾4}\\{xy£¾4}\end{array}\right.$£¬Ôò$\left\{\begin{array}{l}{x£¾2}\\{y£¾2}\end{array}\right.$ÊǼÙÃüÌ⣬±ÈÈçx=1£¬y=5£»
B£¬ÉèÃüÌâp£º?x£¾0£¬x2£¾2x£¬Ôò©Vp£º?x0£¾0£¬x02¡Ü2£»
C£¬¡÷ABCÖУ¬A£¾B?2RsinA£¾2RsinB?a£¾b£»
D£¬f£¨x£©=ax2+2x-1Ö»ÓÐÒ»¸öÁãµã£¬⇒a=0»òa=-1£»
½â´ð ½â£º¶ÔÓÚA£¬Èôx£¬y¡ÊR£¬ÇÒ$\left\{\begin{array}{l}{x+y£¾4}\\{xy£¾4}\end{array}\right.$£¬Ôò$\left\{\begin{array}{l}{x£¾2}\\{y£¾2}\end{array}\right.$ÊǼÙÃüÌ⣬±ÈÈçx=1£¬y=5£¬¹Ê´í£»
¶ÔÓÚB£¬ÉèÃüÌâp£º?x£¾0£¬x2£¾2x£¬Ôò©Vp£º?x0£¾0£¬x02¡Ü2£¬¹Ê´í£»
¶ÔÓÚC£¬¡÷ABCÖУ¬A£¾B?2RsinA£¾2RsinB?a£¾b£¬¹ÊÕýÈ·£»
¶ÔÓÚD£¬f£¨x£©=ax2+2x-1Ö»ÓÐÒ»¸öÁãµã£¬⇒a=0»òa=-1£¬¹Ê´í£»
¹ÊÑ¡£ºC
µãÆÀ ±¾Ì⿼²éÁ˺¬ÓÐÁ¿´ÊÃüÌâÕæ¼ÙµÄÅж¨£¬ÃüÌâµÄËÄÖÖÐÎʽ£¬³äÒªÌõ¼þµÄÅж¨£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®Èôg£¨x£©=2x-1£¬f[g£¨x£©]=$\frac{1+{x}^{2}}{3{x}^{2}}$£¬Ôòf£¨-3£©=£¨¡¡¡¡£©
| A£® | 1 | B£® | $\frac{2}{3}$ | C£® | $\sqrt{3}$ | D£® | $\frac{{\sqrt{3}}}{3}$ |
11£®ÊýÁÐ{an}µÄǰnÏîºÍSn=n2-5n£¨n¡ÊN*£©£¬Èôp-q=4£¬Ôòap-aq=£¨¡¡¡¡£©
| A£® | 20 | B£® | 16 | C£® | 12 | D£® | 8 |
18£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èô¡°x=$\frac{¦Ð}{4}$£¬Ôòtanx=1¡±µÄÄæÃüÌâÎªÕæÃüÌâ | |
| B£® | ÔÚ¡÷ABCÖУ¬sinA£¾sinBµÄ³äÒªÌõ¼þÊÇA£¾B | |
| C£® | º¯Êýf£¨x£©=sinx+$\frac{4}{sinx}$£¬x¡Ê£¨0£¬¦Ð£©µÄ×îСֵΪ4 | |
| D£® | ?x¡ÊR£¬Ê¹µÃsinx•cosx=$\frac{3}{5}$ |
15£®ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬c=2£¬ÇÒsin2A+sin2B=sinAsinB+sin2C£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | $\sqrt{3}$ | D£® | $2\sqrt{3}$ |
12£®ÒÑÖªÖ±Ïßa£¬bÒÔ¼°Æ½Ãæ¦Á£¬¦Â£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Èôa¡Î¦Á£¬b¡Î¦Á£¬Ôòa¡Îb | B£® | Èôa¡Î¦Á£¬b¡Í¦Á£¬Ôò a¡Íb | ||
| C£® | Èôa¡Îb£¬b¡Î¦Á£¬Ôòa¡Î¦Á | D£® | Èôa¡Í¦Á£¬b¡Î¦Â£¬Ôò ¦Á¡Í¦Â |