题目内容
5.已知等差数列{an}满足${a_3}=7,{a_5}+{a_7}=26,{b_n}=\frac{1}{{{a_n}^2-1}}(n∈{N^*})$,数列{bn}的前n项和为Sn,则S100的值为$\frac{25}{101}$.分析 利用等差数列的通项公式与“裂项求和”方法即可得出.
解答 解:设等差数列{an}的公差为d,∵a3=7,a5+a7=26,
∴a1+2d=7,2a1+10d=26,
解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
∴bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴Sn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4(n+1)}$.
∴S100=$\frac{100}{4(100+1)}$=$\frac{25}{101}$
故答案为:$\frac{25}{101}$.
点评 本题考查了等差数列的通项公式与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.已知a,b,c分别为△ABC的三个内角A,B,C的对边,c=2,且sin2A+sin2B=sinAsinB+sin2C,则△ABC面积的最大值为( )
| A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
16.设集合A={m∈Z|m≤-3或m≥2},B={n∈N|-1≤n<3},则B∩(∁ZA)=( )
| A. | {0,1,2} | B. | {-1,0,1} | C. | {0,1} | D. | {-1,0,1,2} |
20.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),定义一种向量积:$\overrightarrow{a}$?$\overrightarrow{b}$=(a1b1,a2b2),已知$\vec m=(1,\frac{1}{2}),\vec n=(0,1)$,且点P(x,y)在函数$y=sin\frac{x}{2}$的图象上运动,点q在函数y=f(x)的图象上运动,且点p和点q满足:$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O为坐标原点),则函数y=f(x)的最大值A及最小正周期T分别为( )
| A. | 1,π | B. | 1,4π | C. | $\frac{3}{2},π$ | D. | $\frac{3}{2},4π$ |
17.某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为( )
| A. | 16、10、10、4 | B. | 14、10、10、6 | C. | 13、12、12、3 | D. | 15、8、8、9 |