题目内容

14.(x+1+$\frac{1}{x}$)6的展开式中的常数项为(  )
A.32B.90C.140D.141

分析 先将原式写成:(x+1+$\frac{1}{x}$)6=[1+(x+$\frac{1}{x}$)]6,再用二项式定理将该式展开,根据常数项的特征,得出常数项为:${C}_{6}^{0}$+${C}_{6}^{2}$•${C}_{2}^{1}$+${C}_{6}^{4}$•${C}_{4}^{2}$+${C}_{6}^{6}$•${C}_{6}^{3}$,最后求出其值即可.

解答 解:(x+1+$\frac{1}{x}$)6=[1+(x+$\frac{1}{x}$)]6
=${C}_{6}^{0}$+${C}_{6}^{1}$(x+$\frac{1}{x}$)+${C}_{6}^{2}$(x+$\frac{1}{x}$)2+${C}_{6}^{3}$(x+$\frac{1}{x}$)3+…+${C}_{6}^{6}$(x+$\frac{1}{x}$)6
上式共有7项,其中第一,三,五,七项存在常数项,
因此,这四项的常数项之和即为原式的常数项,
且各项的常数项如下:
${C}_{6}^{0}$+${C}_{6}^{2}$•${C}_{2}^{1}$+${C}_{6}^{4}$•${C}_{4}^{2}$+${C}_{6}^{6}$•${C}_{6}^{3}$
=1+30+90+20=141,
即(x+1+$\frac{1}{x}$)6的常数项为141,
故答案为:D.

点评 本题主要考查了二项式定理及其应用,涉及二项式系数的性质和常数项的确定,以及组合数的运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网