题目内容
14.(x+1+$\frac{1}{x}$)6的展开式中的常数项为( )| A. | 32 | B. | 90 | C. | 140 | D. | 141 |
分析 先将原式写成:(x+1+$\frac{1}{x}$)6=[1+(x+$\frac{1}{x}$)]6,再用二项式定理将该式展开,根据常数项的特征,得出常数项为:${C}_{6}^{0}$+${C}_{6}^{2}$•${C}_{2}^{1}$+${C}_{6}^{4}$•${C}_{4}^{2}$+${C}_{6}^{6}$•${C}_{6}^{3}$,最后求出其值即可.
解答 解:(x+1+$\frac{1}{x}$)6=[1+(x+$\frac{1}{x}$)]6
=${C}_{6}^{0}$+${C}_{6}^{1}$(x+$\frac{1}{x}$)+${C}_{6}^{2}$(x+$\frac{1}{x}$)2+${C}_{6}^{3}$(x+$\frac{1}{x}$)3+…+${C}_{6}^{6}$(x+$\frac{1}{x}$)6,
上式共有7项,其中第一,三,五,七项存在常数项,
因此,这四项的常数项之和即为原式的常数项,
且各项的常数项如下:
${C}_{6}^{0}$+${C}_{6}^{2}$•${C}_{2}^{1}$+${C}_{6}^{4}$•${C}_{4}^{2}$+${C}_{6}^{6}$•${C}_{6}^{3}$
=1+30+90+20=141,
即(x+1+$\frac{1}{x}$)6的常数项为141,
故答案为:D.
点评 本题主要考查了二项式定理及其应用,涉及二项式系数的性质和常数项的确定,以及组合数的运算,属于中档题.
练习册系列答案
相关题目
2.已知等差数列{an}前四项中第二项为606,前四项和S4为3883,则该数列第4项为( )
| A. | 3074 | B. | 2065 | C. | 2024 | D. | 2016 |
9.已知函数y=2sin($\frac{x}{2}$-$\frac{π}{4}$)
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.
(1)用“五点法”作出函数图象;
(2)指出它可由函数y=sinx的图象经过哪些变换而得到;
(3)写出函数的单调增区间.
6.已知点A(0,2),B(4,0),C(-2,1),若直线CD与直线AB相交,且交点D在线段AB上,直线CD的斜率为k,求$k+\frac{1}{2}+\frac{1}{{k+\frac{1}{2}}}$的取值范围( )
| A. | .$(2,\frac{10}{3})$ | B. | $(-∞,\frac{10}{3})$ | C. | $[2,\frac{10}{3}]$ | D. | [2,+∞) |