题目内容

函数y=x2-2x+5,x∈[-1,2]的值域是
 
.(用区间表示)
考点:二次函数在闭区间上的最值
专题:函数的性质及应用
分析:由条件利用二次函数的性质求得函数y=x2-2x+5,x∈[-1,2]的值域.
解答: 解:函数y=x2-2x+5=(x-1)2+4,x∈[-1,2],故当x=1时,函数取得最小值为4,
当x=-1时,函数取得最大值为8,故函数的值域为[4,8],
故答案为:[4,8].
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了转化的数学思想,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网