题目内容
已知正项数列{an}的前项和为Sn,且Sn=
,bn=
,n∈N*.
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)求证:(an+1)bn≤
;
(Ⅲ)求证:a1b1+a2b2+…+anbn<1.
| (an+1)2 |
| 4 |
| 1 |
| (n+1)n |
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)求证:(an+1)bn≤
| 1 |
| nn-1 |
(Ⅲ)求证:a1b1+a2b2+…+anbn<1.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出4an=an2-an-12+2an-2an-1,从而得到{an}是首项为1公差为2的等差数列,由此求出an=2n-1.
(Ⅱ)欲证明(an+1)bn≤
,即证(1+
)n≥2,由二项式定理能证明(1+
)n≥2,由此能证明(an+1)bn≤
.
(Ⅲ)由(Ⅱ)知anbn≤
-
,由此能证明a1b1+a2b2+…+anbn<1.
(Ⅱ)欲证明(an+1)bn≤
| 1 |
| nn-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| nn-1 |
(Ⅲ)由(Ⅱ)知anbn≤
| 1 |
| nn-1 |
| 1 |
| (n+1)n |
解答:
(Ⅰ)解:∵正项数列{an}的前项和为Sn,且Sn=
,
∴a1=
,解得a1=1.
4Sn=(an+1)2,a≥2时,4Sn-1=(an-1+1)2,
两式相减,得:4an=an2-an-12+2an-2an-1,
∴(an+an+1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
又a1=1,∴{an}是首项为1公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
(Ⅱ)证明:欲证明(an+1)bn≤
,即证
≤
,
即证2nn≤(n+1)n,即证(1+
)n≥2,
∵(1+
)n=1+
•
+
(
)2+…+
(
)n
≥1+
•
=1+n•
=2,
∴(an+1)bn≤
.
(Ⅲ)证明:由(Ⅱ)知anbn≤
-
≤
-
,
∴a1b1+a2b2+…+anbn
≤(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
<1.
∴a1b1+a2b2+…+anbn<1.
| (an+1)2 |
| 4 |
∴a1=
| (a1+1)2 |
| 4 |
4Sn=(an+1)2,a≥2时,4Sn-1=(an-1+1)2,
两式相减,得:4an=an2-an-12+2an-2an-1,
∴(an+an+1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
又a1=1,∴{an}是首项为1公差为2的等差数列,
∴an=1+(n-1)×2=2n-1.
(Ⅱ)证明:欲证明(an+1)bn≤
| 1 |
| nn-1 |
| 2n |
| (n+1)n |
| 1 |
| nn-1 |
即证2nn≤(n+1)n,即证(1+
| 1 |
| n |
∵(1+
| 1 |
| n |
| C | 1 n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
≥1+
| C | 1 n |
| 1 |
| n |
| 1 |
| n |
∴(an+1)bn≤
| 1 |
| nn-1 |
(Ⅲ)证明:由(Ⅱ)知anbn≤
| 1 |
| nn-1 |
| bn |
| nn-1 |
| 1 |
| nn-1 |
| 1 |
| (n+1)n |
∴a1b1+a2b2+…+anbn
≤(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 32 |
| 1 |
| 32 |
| 1 |
| 43 |
| 1 |
| nn-1 |
| 1 |
| (n+1)n |
=1-
| 1 |
| (n+1)n |
∴a1b1+a2b2+…+anbn<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意二项式定理和裂项求和法的合理运用.
练习册系列答案
相关题目