题目内容
已知直线a、b,平面α、β,那么下列命题中正确的是( )
| A、若a?α,b?β,a⊥b,则α⊥β |
| B、若a?α,b?β,a∥b,则α∥β |
| C、若a∥α,a⊥b,则b⊥α |
| D、若a∥α,a⊥β,则α⊥β |
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答:
解:若a?α,b?β,a⊥b,则α与β相交或平行,故A错误;
若a?α,b?β,a∥b,则α与β相交或平行,故B错误;
若a∥α,a⊥b,则b与α相交、平行或b?α,故C错误;
若a∥α,a⊥β,则由平面与平面垂直的判定定理知α⊥β,故D正确.
故选:D.
若a?α,b?β,a∥b,则α与β相交或平行,故B错误;
若a∥α,a⊥b,则b与α相交、平行或b?α,故C错误;
若a∥α,a⊥β,则由平面与平面垂直的判定定理知α⊥β,故D正确.
故选:D.
点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目
下列命题正确的是( )
| A、三角形的中位线平行且等于第三边 |
| B、对角线相等的四边形是等腰梯形 |
| C、四条边都相等的四边形是菱形 |
| D、相等的角是对顶角 |
(不包含边界),设
| OP |
| OP1 |
| OP2 |
| A、m>0,n>0 |
| B、m>0,n<0 |
| C、m<0,n>0 |
| D、m<0,n<0 |
已知不等式f(x)=
sin
cos
+cos2
-
-m≤0对于任意的-
≤x≤
恒成立,则实数m的取值范围是( )
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| 1 |
| 2 |
| 5π |
| 6 |
| π |
| 6 |
A、m≥
| ||||||||
B、m≤
| ||||||||
C、m≤-
| ||||||||
D、-
|