题目内容
14.(1)已知复数z=3+bi,(b为正实数),且(z-2)2为纯虚数.若w=(2+i)z求复数w的模.(2)有以下三个不等式:
(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(20×102+10×7)2.
请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论.
分析 (1)利用复数(z-2)2为纯虚数.求出b,然后求w的模;
(2)由已知等式,发现规律得到一般结论,并利用作差法证明即可.
解答 (1)解:复数z=3+bi,(b为正实数),且(z-2)2为纯虚数.
所以(1-bi)2=1-b2-2bi为纯虚数,所以1-b2=0,解得b=1(-1舍去);
所以w=(2+i)z=(2+i)(3+i)=5+5i,所以复数w的模为$\sqrt{{5}^{2}+{5}^{2}}=5\sqrt{2}$;
(2)由已知以下三个不等式:
(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(20×102+10×7)2.
观察这三个不等式,猜想出一个一般性的结论:解:结论为:(a2+b2)(c2+d2)≥(ac+bd)2.
证明:(a2+b2)(c2+d2)-(ac+bd)2
=a2c2+a2d2+b2c2+b2d2-(a2c2+b2d2+2abcd)
=a2d2+b2c2-2abcd=(ac-bd)2≥0
所以(a2+b2)(c2+d2)≥(ac+bd)2.
点评 本题考查了复数的计算依据归纳推理,要求学生通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.
练习册系列答案
相关题目
2.已知等差数列{an}满足a2=0,a6+a8=-10,则a2017=( )
| A. | 2 014 | B. | 2 015 | C. | -2014 | D. | -2015 |
9.已知集合A={x∈R|1≤x≤3},B={x∈R|x2≥4},则A∩(∁RB)=( )
| A. | [-2,3] | B. | (2,3) | C. | [1,2) | D. | (-2,1) |
19.教育部考试中心在对高考试卷难度与区分性能分析的研究中,在2007至2016十年间对每年理科数学的高考试卷随机抽取了若干样本,统计得到解答题得分率x以及整卷得分率y的数据,如下表:
(1)利用最小二乘法求出y关于x的线性回归方程;(精确到0.01)
(2)若以函数y=0.85$\sqrt{x}$-0.01来拟合y与x之间的关系,计算得到相关指数R2=0.87,对比(1)中模型,哪一个模型拟合效果更好?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
参考数据:$\sum_{i=1}^{10}{x}_{i}$≈3.7,$\sum_{i=1}^{10}{y}_{i}$≈5,$\sum_{i=1}^{10}{x}_{i}{y}_{i}$≈1.89,$\sum_{i=1}^{10}{{x}_{i}}^{2}$≈1.429,$\sum_{i=1}^{10}({y}_{i}-\widehat{{y}_{i}})^{2}$≈0.006,$\sum_{i=1}^{10}$(yi-$\overline{y}$)2≈0.036
其中${\widehat{y}}_{i}$表示(1)中拟合直线对应的估计值.
| 年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 解答题得分率(x) | 0.39 | 0.30 | 0.25 | 0.28 | 0.55 | 0.33 | 0.36 | 0.40 | 0.40 | 0.42 |
| 整卷得分率(y) | 0.50 | 0.43 | 0.41 | 0.44 | 0.59 | 0.47 | 0.52 | 0.56 | 0.54 | 0.57 |
(2)若以函数y=0.85$\sqrt{x}$-0.01来拟合y与x之间的关系,计算得到相关指数R2=0.87,对比(1)中模型,哪一个模型拟合效果更好?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\widehat{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$
参考数据:$\sum_{i=1}^{10}{x}_{i}$≈3.7,$\sum_{i=1}^{10}{y}_{i}$≈5,$\sum_{i=1}^{10}{x}_{i}{y}_{i}$≈1.89,$\sum_{i=1}^{10}{{x}_{i}}^{2}$≈1.429,$\sum_{i=1}^{10}({y}_{i}-\widehat{{y}_{i}})^{2}$≈0.006,$\sum_{i=1}^{10}$(yi-$\overline{y}$)2≈0.036
其中${\widehat{y}}_{i}$表示(1)中拟合直线对应的估计值.
11.若$C_{10}^x=C_{10}^2$,则正整数x的值为( )
| A. | 2 | B. | 8 | C. | 2或6 | D. | 2或8 |