题目内容
6.已知直线2x-$\sqrt{3}$y=0为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线,则该双曲线的离心率为$\frac{\sqrt{21}}{3}$.分析 根据题意,由双曲线的方程可得其渐近线方程为y=±$\frac{b}{a}$x,结合题意可得$\frac{b}{a}$=$\frac{2}{\sqrt{3}}$,又由双曲线离心率公式e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=1+$\frac{{b}^{2}}{{a}^{2}}$,计算可得答案.
解答 解:根据题意,双曲线的方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
其渐近线方程为:y=±$\frac{b}{a}$x,
又由其一条渐近线的方程为:2x-$\sqrt{3}$y=0,即y=$\frac{2}{\sqrt{3}}x$,
则有$\frac{b}{a}$=$\frac{2}{\sqrt{3}}$,
则其离心率e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=1+$\frac{{b}^{2}}{{a}^{2}}$=$\frac{7}{3}$,
则有e=$\frac{\sqrt{21}}{3}$;
故答案为:$\frac{\sqrt{21}}{3}$.
点评 本题考查双曲线的几何性质,关键是熟悉双曲线的离心率公式.
练习册系列答案
相关题目
2.若双曲线$\frac{x^2}{3-m}+\frac{y^2}{m-1}=1$的渐近线方程为$y=±\frac{1}{2}x$,则m的值为( )
| A. | -1 | B. | $\frac{1}{3}$ | C. | $\frac{11}{3}$ | D. | -1或$\frac{1}{3}$ |
1.在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
(2)若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.
参考数据:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 10 | 30 | 30 | 20 | 5 | 5 |
| 赞成人数 | 8 | 25 | 24 | 10 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 赞成 | |||
| 不赞成 | |||
| 合计 |
参考数据:
| P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 6.635 | 7.879 | 10.828 |
16.设Sn是等差数列{an}的前n项和,若a3+a5+a7=27,则S9=( )
| A. | 81 | B. | 79 | C. | 77 | D. | 75 |