题目内容
若随机变量X服从正态分布X~N(1,σ2),且P(3<X)=0.4,则P(-1<X<1)=( )
| A、0.1 | B、0.2 |
| C、0.3 | D、0.4 |
考点:正态分布曲线的特点及曲线所表示的意义
专题:计算题,概率与统计
分析:根据随机变量ξ服从正态分布N(1,σ2),得到正态曲线关于x=1对称,根据所给的一个区间上的概率,得到对称区间上的概率,根据对称轴一侧的区间概率是0.5,得到要求的结果.
解答:
解:∵随机变量X服从正态分布X~N(1,σ2),
∴正态曲线关于x=1对称,
∵P(3<X)=0.4,
∴P(1<X<3)=0.1
∴P(-1<X<1)=P(1<X<3)=0.1,
故选:A.
∴正态曲线关于x=1对称,
∵P(3<X)=0.4,
∴P(1<X<3)=0.1
∴P(-1<X<1)=P(1<X<3)=0.1,
故选:A.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态曲线的对称性,考查对称区间的概率相等,本题是一个基础题.
练习册系列答案
相关题目
已知a=log23+log2
,b=log23
,c=log32,则a,b,c的大小关系是( )
| 3 |
| 3 |
| A、a=b>c |
| B、a=b<c |
| C、a<b<c |
| D、a>b>c |
若抛物线y2=x上一点P到准线的距离等于它到顶点的距离,则点P到x轴的距离为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
把函数f(x)=sin(2x-
)的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)的图象关于y轴对称,则φ的值为( )
| π |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
函数y=cos2x+2是( )
| A、最小正周期为π的偶函数 |
| B、最小正周期为π的奇函数 |
| C、最小正周期为2π的偶函数 |
| D、最小正周期为2π的奇函数 |
直线a,b异面,a∥平面α,则对于下列论断正确的是( )
①一定存在平面α使b⊥α;
②一定存在平面α使b∥α;
③一定存在平面α使b⊆α;
④一定存在无数个平面α与b交于一定点.
①一定存在平面α使b⊥α;
②一定存在平面α使b∥α;
③一定存在平面α使b⊆α;
④一定存在无数个平面α与b交于一定点.
| A、①④ | B、②③ |
| C、①②③ | D、②③④ |
直线l过点P(1,2)且倾斜角是直线x-2y=0倾斜角的2倍,则直线l的方程是( )
| A、3x-4y+5=0 |
| B、x-y=0 |
| C、4x-3y+2=0 |
| D、2x-y=0 |