题目内容
18.设f(x)=max$\left\{{{x^2}-4x+3,\frac{3}{2}x+\frac{1}{2},3-x}\right\}$,其中max{a,b,c}表示三个数a,b,c中的最大值,则f(x)的最小值是2.分析 分别作出y=x2-4x+3,y=$\frac{3}{2}$x+$\frac{1}{2}$,y=3-x的图象,分别求出最小值,比较即可.
解答
解:分别作出y=x2-4x+3,y=$\frac{3}{2}$x+$\frac{1}{2}$,y=3-x的图象,
当x≤0时,f(x)=x2-4x+3,其最小值为3,
当0<x≤1时,f(x)=3-x,其最小值为2,
当1≤x≤5时,f(x)=y=$\frac{3}{2}$x+$\frac{1}{2}$,其最小值为2,
当x>5时,f(x)=x2-4x+3,其最小值为8,
综上所述f(x)的最小值是2,
故答案为:2
点评 本题考查新定义的理解和运用,画出图象,通过图象观察和函数最值是关键.
练习册系列答案
相关题目
18.
某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
(Ⅰ)求a,b,c的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望E(ξ);
(Ⅲ)某评估机构以指标M(M=$\frac{E(ξ)}{D(ξ)}$,其中D(ξ)表示ξ的方差)来评估该校安全教育活动的成效.若M≥0.7,则认定教育活动是有效的;否则认定教育活动五校,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
| 等级 | 不合格 | 合格 | ||
| 得分 | [20,40) | [40,60) | [60,80) | [80,100] |
| 频数 | 6 | a | 24 | b |
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望E(ξ);
(Ⅲ)某评估机构以指标M(M=$\frac{E(ξ)}{D(ξ)}$,其中D(ξ)表示ξ的方差)来评估该校安全教育活动的成效.若M≥0.7,则认定教育活动是有效的;否则认定教育活动五校,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?
6.已知函数$f(x)={e^{{x^2}+2x}}$,设$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,则有( )
| A. | f(a)<f(b)<f(c) | B. | f(a)<f(c)<f(b) | C. | f(b)<f(c)<f(a) | D. | f(b)<f(a)<f(c) |
7.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)的非空子集共有( )
| A. | 3个 | B. | 4个 | C. | 7个 | D. | 8个 |