题目内容
20.若f(x)=2xf'(1)+x2,则f'(0)等于( )| A. | -2 | B. | 4 | C. | 2 | D. | -4 |
分析 根据题意,对f(x)求导可得f′(x)=2f'(1)+2x,令x=1可得:f′(1)=2f'(1)+2,解可得f′(1)的值,即可得f′(x)的解析式,将x=0代入可得f'(0)的值,即可得答案.
解答 解:根据题意,f(x)=2xf'(1)+x2,
则其导数f′(x)=2f'(1)+2x,
令x=1可得:f′(1)=2f'(1)+2,解可得f′(1)=-2,
则f′(x)=2×(-2)+2x=2x-4,
则f'(0)=-4;
故选:D.
点评 本题考查导数的计算,关键求出f'(1)的值,确定函数的解析式.
练习册系列答案
相关题目
11.在△ABC中,D为BC的中点,若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$为( )
| A. | $\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ | B. | $\frac{1}{2}$$\overrightarrow{b}$-$\overrightarrow{a}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$ | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ |
5.在平面直角坐标系xOy中,不等式组$\left\{\begin{array}{l}x≥1\\ y≥x\\ x+y-3≤0\end{array}\right.$所表示的平面区域的面积为( )
| A. | $\frac{2}{9}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
12.
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为M1,众数为M2,平均值为$\overline x$,则( )
| A. | M1=M2=$\overline x$ | B. | M1=M2<$\overline x$ | C. | M1<M2<$\overline x$ | D. | M2<M1<$\overline x$ |