题目内容

13.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$.
(1)求sin($\frac{π}{4}$+α)的值;
(2)(理科)求cos($\frac{5π}{6}$-2α)的值.
(文科)求cos2α+sin2α的值.

分析 (1)利用同角三角函数的基本关系求得cosα的值,再利用两角差的三角公式,求得sin($\frac{π}{4}$+α)的值.
(2)利用二倍角公式求得)cos2α+sin2α 的值.

解答 解:(1)∵α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{5}}{5}$,
∴sin($\frac{π}{4}$+α)=sin$\frac{π}{4}$cosα+cos$\frac{π}{4}$sinα=$\frac{\sqrt{2}}{2}•(-\frac{2\sqrt{5}}{5})$+$\frac{\sqrt{2}}{2}•\frac{1}{5}$=$\frac{\sqrt{2}-2\sqrt{10}}{10}$.
(2)(理科)cos($\frac{5π}{6}$-2α)=-sin($\frac{π}{3}$-2α)=-sin$\frac{π}{3}$cos2α+cos$\frac{π}{3}$sin2α
=-$\frac{\sqrt{3}}{2}$•(2cos2α-1)+$\frac{1}{2}$•2sinαcosα=-$\frac{\sqrt{3}}{2}$•(2•$\frac{4}{5}$-1)+$\frac{\sqrt{5}}{5}•(-\frac{2\sqrt{5}}{5})$=$\frac{-3\sqrt{3}-10}{10}$=-$\frac{3\sqrt{3}+10}{10}$.
(文科)cos2α+sin2α=(2cos2α-1)+2sinαcosα=(2•$\frac{4}{5}$-1)+2•$\frac{\sqrt{5}}{5}$•(-$\frac{2\sqrt{5}}{5}$)=$\frac{3}{5}$-$\frac{4}{5}$=-$\frac{1}{5}$.

点评 本题主要考查同角三角函数的基本关系,两角差的三角公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网