题目内容
一次射击训练,某小组的成绩只有7环、8环、9环三种情况,且该小组的平均成绩为8.15环,设该小组成绩为7环的有x人,成绩为8环、9环的人数情况见下表:那么x= .
| 环数(环) | 8 | 9 |
| 人数(人) | 7 | 8 |
考点:众数、中位数、平均数
专题:概率与统计
分析:根据平均数的计算公式,建立方程即可得到结论.
解答:
解:∵该小组的平均成绩为8.15环,
∴依题意得7x+8×7+9×8=(x+7+8)×8.15,
由此解得x=5.
故答案:5
∴依题意得7x+8×7+9×8=(x+7+8)×8.15,
由此解得x=5.
故答案:5
点评:本题主要考查平均数的计算,利用平均数的公式是解决本题的关键,比较基础.
练习册系列答案
相关题目
在△ABC中,若tanA•tanB>1,则△ABC的形状( )
| A、一定是锐角三角形 |
| B、一定是直角三角形 |
| C、一定是钝角三角形 |
| D、可能是锐角三角形,也可能是钝角三角形 |
图中阴影(包括直线)表示的区域满足的不等式是( )

| A、x-y-1≥0 |
| B、x-y+1≥0 |
| C、x-y-1≤0 |
| D、x-y+1≤0 |