题目内容
1.已知角A是△ABC的一个内角,若sin A+cos A=$\frac{3}{5}$,则sinA-cosA等于$\frac{{\sqrt{41}}}{5}$.分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得sinA-cosA的值.
解答 解:∵角A是△ABC的一个内角,若sin A+cos A=$\frac{3}{5}$,
∴1+2sinAcosA=$\frac{9}{25}$,∴sinAcosA=-$\frac{8}{25}$,∴A为钝角,
则sinA-cosA=$\sqrt{{(sinA-cosA)}^{2}}$=$\sqrt{1-2sinAcosA}$=$\sqrt{1-2•(-\frac{8}{25})}$=$\frac{\sqrt{41}}{5}$,
故答案为:$\frac{\sqrt{41}}{5}$.
点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关题目
16.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现用分层抽样方法抽取一个容量为30的样本,则各职称中抽取的人数分别为( )
| A. | 5,10,15 | B. | 3,9,18 | C. | 5,9,16 | D. | 3,10,17 |
13.$\overrightarrow{a}$,$\overrightarrow{b}$都为向量,则下列式子正确的是( )
| A. | $\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2 | B. | ($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2 | C. | ($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$) | D. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$| |