题目内容
13.$\overrightarrow{a}$,$\overrightarrow{b}$都为向量,则下列式子正确的是( )| A. | $\overrightarrow{a}$•|$\overrightarrow{a}$|=$\overrightarrow{a}$2 | B. | ($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2 | C. | ($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$) | D. | |$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$| |
分析 根据向量数量积的公式分别进行判断即可.
解答 解:A.$\overrightarrow{a}$•|$\overrightarrow{a}$|是向量,$\overrightarrow{a}$2是常数,方程不成立,
B.($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2.cos2<$\overrightarrow{a}$,$\overrightarrow{b}$>,则当两个向量不共线时,方程不成立,
C.($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$与$\overrightarrow{c}$共线,$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)与$\overrightarrow{a}$共线,则方程不成立,
D.|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$||cos<$\overrightarrow{a}$,$\overrightarrow{b}$>|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|,故D正确
故选:D.
点评 本题主要考查与向量有关的命题的真假判断,根据向量数量积的公式是解决本题的关键.
练习册系列答案
相关题目
8.定义在实数域上的偶函数f(x)对于?x∈R,均满足条件f(x+2)=f(x)+f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有5个零点,则a的取值范围是( )
| A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,$\frac{\sqrt{3}}{3}$) | C. | (0,$\frac{\sqrt{5}}{5}$) | D. | (0,$\frac{\sqrt{6}}{6}$) |
18.$tan(-\frac{π}{4})$=( )
| A. | 1 | B. | -1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |