题目内容
已知直线l的参数方程为
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半径为极轴)中,曲线C的极坐标方程为ρ=4cosθ.
(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;
(2)设直线l与曲线C交于P、Q两点,求|PQ|.
|
(1)分别将直线l和曲线C的方程化为直角坐标系下的普通方程;
(2)设直线l与曲线C交于P、Q两点,求|PQ|.
考点:参数方程化成普通方程,点的极坐标和直角坐标的互化
专题:选作题,坐标系和参数方程
分析:(1)消去参数,可得直线l的普通方程,圆ρ=4cosθ,等式两边同时乘以ρ,可得曲线C的方程化为直角坐标系下的普通方程;
(2)求出圆心和半径,再求出圆心到直线的距离,即可求|PQ|.
(2)求出圆心和半径,再求出圆心到直线的距离,即可求|PQ|.
解答:
解:(1)直线l的参数方程为
(t为参数),普通方程为y=
x+2-2
;
圆ρ=4cosθ,等式两边同时乘以ρ得到ρ2=4ρcosθ,即x2+y2=4x,即(x-2)2+y2=4;
(2)x2+y2=4x,即(x-2)2+y2=4,表示以(2,0)为圆心,半径等于2的圆.
圆心到直线的距离为
=1,
∴|PQ|=2
=2
.
|
| 3 |
| 3 |
圆ρ=4cosθ,等式两边同时乘以ρ得到ρ2=4ρcosθ,即x2+y2=4x,即(x-2)2+y2=4;
(2)x2+y2=4x,即(x-2)2+y2=4,表示以(2,0)为圆心,半径等于2的圆.
圆心到直线的距离为
| 2 |
| 2 |
∴|PQ|=2
| 4-1 |
| 3 |
点评:本题考查参数方程化成普通方程、极坐标方程化为直角坐标方程,考查直线与圆的位置关系,比较基础.
练习册系列答案
相关题目
若奇函数f(x)=3sinx+c的定义域是[a,b],则a+b+c等于( )
| A、3 | B、-3 | C、0 | D、无法计算 |
已知函数y=
的定义域为A,集合B={x||x-3|<a,a>0},若A∩B中的最小元素为2,则实数a的取值范围是( )
| x2-x-2 |
| A、(0,4] |
| B、(0,4) |
| C、(1,4] |
| D、(1,4) |