题目内容

5.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如表:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别和对手机的“认可”有关;
女性用户男性用户合计
“认可”手机
“不认可”手机
合计
P(X2≥k)0.050.01
k3.8416.635
X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

分析 (Ⅰ)利用数据直接填写联列表即可,求出X2,即可回答是否有95%的把握认为性别和对手机的“认可”有关;
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于8(0分)有6人,其中评分小于9(0分)的人数为4,从6人人任取3人,记评分小于9(0分)的人数为X,则X取值为1,2,3,求出相应概率,得到X的分布列,然后求解期望.

解答 解:(Ⅰ)2×2列联表如下图:

女性用户男性用户合计
“认可”手机140180320
“不认可”手机60120180
合计200300500
…(3分)
${Χ^2}=\frac{{500{{(140×120-180×60)}^2}}}{200×300×320×180}≈5.208>3.841$,
所以有95%的把握认为性别和对手机的“认可”有关.…(6分)
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于8(0分)有6人,其中评分小于9(0分)的人数为4,从6人人任取3人,记评分小于9(0分)的人数为X,则X取值为1,2,3,$P(X=1)=\frac{C_4^1C_2^2}{C_6^3}=\frac{4}{20}=\frac{1}{5}$;$P(X=2)=\frac{C_4^2C_2^1}{C_6^3}=\frac{12}{20}=\frac{3}{5}$;$P(X=3)=\frac{C_4^3C_2^2}{C_6^3}=\frac{4}{20}=\frac{1}{5}$.
…(9分)
所以X的分布列为
X123
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
$EX=\frac{4}{6}×3=2$或$EX=\frac{1}{5}+\frac{6}{5}+\frac{3}{5}=2$.…(12分)

点评 本题考查独立检验以及离散性随机变量的分布列以及期望的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网