题目内容
15.已知△ABC的内角B满足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\vec b$且$\overrightarrow a,\vec b$满足:$\overrightarrow{a}$•$\overrightarrow{b}$=-9,$|{\overrightarrow a}|=3,|{\vec b}$|=5,θ为$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.(Ⅰ)求∠B;
(Ⅱ)求sin(B+C).
分析 (Ⅰ)根据二倍角公式即可到关于cosB的一个方程,解得即可;
(Ⅱ)根据向量的夹角公式和两角和的正弦公式计算即可.
解答 解:(Ⅰ)∵2cos2B-8cosB+5=0,
∴2(2cos2B-1)-8cosB+5=0,
∴4cos2B-8cosB+3=0
∴$cosB=\frac{1}{2}$或cosB=$\frac{3}{2}$(舍去)
又角B是△ABC的内角,
∴$B=\frac{π}{3}$;
(Ⅱ)$\overrightarrow{a}$•$\overrightarrow{b}$=-9,$|{\overrightarrow a}|=3,|{\vec b}$|=5,θ为$\overrightarrow{a}$与$\overrightarrow{b}$的夹角,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=-$\frac{3}{5}$,
∵C=π-θ,
∴cosC=$\frac{3}{5}$,sinC=$\frac{4}{5}$,
∴sin(B+C)=sinBcosC+cosBsinC=$\frac{4+3\sqrt{3}}{10}$
点评 本题考查了二倍角公式和两角和的正弦公式和向量的夹角公式,属于中档题.
练习册系列答案
相关题目
5.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如表:
女性用户:
男性用户
(Ⅰ)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别和对手机的“认可”有关;
X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.
女性用户:
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 45 | 75 | 90 | 60 | 30 |
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | |||
| “不认可”手机 | |||
| 合计 |
| P(X2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.