题目内容
7.sin30°+tan240°的值是( )| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$+$\sqrt{3}$ | D. | $\frac{1}{2}$+$\sqrt{3}$ |
分析 利用诱导公式,特殊角的三角函数值即可化简得解.
解答 解:sin30°+tan240°=$\frac{1}{2}$+tan(180°+60°)=$\frac{1}{2}+$tan60°=$\frac{1}{2}+$$\sqrt{3}$.
故选:D.
点评 本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.
练习册系列答案
相关题目
17.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )
| A. | ($\frac{1}{4}$,-1) | B. | ($\frac{1}{4}$,1) | C. | ($\frac{1}{2}$,-1) | D. | ($\frac{1}{2}$,1) |
15.直线y=kx+1-2k与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的位置关系为( )
| A. | 相交 | B. | 相切 | C. | 相离 | D. | 不确定 |
12.若$α∈(0,\frac{π}{2})$,若$cos(α+\frac{π}{6})=\frac{4}{5}$,则$sin(2α+\frac{π}{3})$的值为( )
| A. | $\frac{12}{25}$ | B. | $\frac{24}{25}$ | C. | $-\frac{24}{25}$ | D. | $-\frac{12}{25}$ |
19.若存在两个正实数x,y,使得等式2x+a(y-2ex)(lny-lnx)=0成立,则实数a的取值范围为( )
| A. | $[{-\frac{1}{2},\frac{1}{e}}]$ | B. | $({0,\frac{2}{e}}]$ | C. | $({-∞,0})∪[{\frac{2}{e},+∞})$ | D. | $({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$ |