题目内容

10.设k∈N+,f:N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+,有f[f(n)]=kn,求证:对任意n∈N+,都有$\frac{2k}{k+1}$n≤f(n)≤$\frac{k+1}{2}$n.

分析 由题意可得f(n)=an+b,a>0,求得,$\left\{\begin{array}{l}{b=0}\\{a=\sqrt{k}}\end{array}\right.$,故f(n)=$\sqrt{k}$n,再利用基本不等式证得要证的不等式成立.

解答 解:由题意可得,可设f(n)=an+b,a>0,则f[f(n)]=a(an+b)+b=a2•n+ab+b,
再根据f[f(n)]=kn,可得$\left\{\begin{array}{l}{ab+b=0}\\{{a}^{2}=k}\end{array}\right.$,∴$\left\{\begin{array}{l}{b=0}\\{a=\sqrt{k}}\end{array}\right.$,故f(n)=$\sqrt{k}$n.
要证不等式$\frac{2k}{k+1}$n≤f(n)≤$\frac{k+1}{2}$n,即证$\frac{2k}{k+1}$≤$\sqrt{k}$≤$\frac{k+1}{2}$.
再利用基本不等式可得$\frac{2k}{k+1}$≤$\sqrt{k}$≤$\frac{k+1}{2}$ 恒成立,
故要证的不等式成立.

点评 本题主要考查函数的单调性的性质,判断f(n)=an+b,a>0,是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网