题目内容
已知α、β满足0<α<
<β<π,cos(β-
)=
,sin(α+β)=
.
(1)求cos(α+
)的值;
(2)求sin2β的值.
| π |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| 4 |
| 5 |
(1)求cos(α+
| π |
| 4 |
(2)求sin2β的值.
考点:两角和与差的余弦函数,两角和与差的正弦函数
专题:三角函数的求值
分析:(1)利用α+
=(α+β)+(
-β),根据已知利用同角三角函数基本关系式求出sin(
-β),cos(α+β).再利用两角和的余弦公式即可得出;
(2)利用同角三角函数基本关系式和(1)先求出sin(α+
),利用β-
=(α+β)-(α+
).可得cos(β-
),再利用倍角公式可得sin2β=cos(
-2β)=cos2(β-
)=2cos2(β-
)-1.即可得出.
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
(2)利用同角三角函数基本关系式和(1)先求出sin(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
解答:
解:(1)∵α、β满足0<α<
<β<π,∴-
<
-β<-
,
<α+β<
.
又∵cos(β-
)=
=cos(
-β),sin(α+β)=
.
∴-
<
-β<-
,
<α+β<π.
∴sin(
-β)=-
=-
,cos(α+β)=-
=-
.
∴cos(α+
)=cos[(α+β)+(
-β)]=cos(α+β)cos(
-β)-sin(α+β)sin(
-β)=-
×
-
×(-
)=
.
(2)∵
<α+
<
,cos(α+
)>0,∴
<α+
<
,∴sin(α+
)=
=
.
∴sin2β=cos(
-2β)=cos2(β-
)=2cos2(β-
)-1.
∵β-
=(α+β)-(α+
).
∴cos(β-
)=cos[(α+β)-(α+
)]=cos(α+β)cos(α+
)+sin(α+β)sin(α+
)
=-
×
+
×
=
.
∴sin2β=2×(
)2-1=-
.
| π |
| 2 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
又∵cos(β-
| π |
| 4 |
| 1 |
| 3 |
| π |
| 4 |
| 4 |
| 5 |
∴-
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
∴sin(
| π |
| 4 |
1-(
|
2
| ||
| 3 |
1-(
|
| 3 |
| 5 |
∴cos(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| 1 |
| 3 |
| 4 |
| 5 |
2
| ||
| 3 |
8
| ||
| 15 |
(2)∵
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
1-cos2(α+
|
4+6
| ||
| 15 |
∴sin2β=cos(
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
∵β-
| π |
| 4 |
| π |
| 4 |
∴cos(β-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=-
| 3 |
| 5 |
8
| ||
| 15 |
| 4 |
| 5 |
4+6
| ||
| 15 |
=
| 1 |
| 3 |
∴sin2β=2×(
| 1 |
| 3 |
| 7 |
| 9 |
点评:本题考查了同角三角函数基本关系、两角和的余弦公式、倍角公式,考查了角的分拆,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目