题目内容
13.已知函数f(x)=2x3-3x2-24x+12,求f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)=-1019.分析 先求出f(x)+f(1-x)=-1,由此能求出f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)的值.
解答 解:∵函数f(x)=2x3-3x2-24x+12,
∴f(x)+f(1-x)=2x3-3x2-24x+12+2(1-x)3-3(1-x)2-24(1-x)+12
=2x3-3x2-24x+12-2x3+6x2-6x+2-3x2+6x-3-24+24x+12=-1
∴f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)
=1006[$f(\frac{1}{2013})$+f($\frac{2012}{2013}$)]+f(1)
=-1006+2-3-24+12
=-1019.
故答案为:-1019.
点评 本题考查函数值的求法,是中档题,解题时要认真审题,正确解题的关键是推导出f(x)+f(1-x)=-1.
练习册系列答案
相关题目
4.M={x|5-x≥$\sqrt{2(x-1)}$},N={x|x2-ax≤x-a},当M?N时,a的取值范围是( )
| A. | a≥3 | B. | a≤3 | C. | a<3 | D. | a>3 |
8.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,其中$\frac{π}{2}$<θ<π,则tanθ=( )
| A. | -$\sqrt{2}$ | B. | -$\frac{12}{5}$ | C. | -2 | D. | -$\frac{5}{12}$ |