题目内容
18.已知正实数a,b满足:a+b=1,则$\frac{2a}{{{a^2}+b}}+\frac{b}{{a+{b^2}}}$的最大值是$\frac{{2\sqrt{3}+3}}{3}$.分析 求出b=1-a,代入得到$\frac{2a}{{{a^2}+b}}+\frac{b}{{a+{b^2}}}$=$\frac{a+1}{{a}^{2}-a+1}$,求出$\frac{{a}^{2}-a+1}{a+1}$的最小值,从而得到答案.
解答 解:∵正实数a,b满足:a+b=1,
∴b=1-a,
∴$\frac{2a}{{{a^2}+b}}+\frac{b}{{a+{b^2}}}$
=$\frac{2a}{{a}^{2}-a+1}$+$\frac{1-a}{a{+(1-a)}^{2}}$
=$\frac{2a}{{a}^{2}-a+1}$+$\frac{1-a}{{a}^{2}-a+1}$
=$\frac{a+1}{{a}^{2}-a+1}$,
而$\frac{{a}^{2}-a+1}{a+1}$
=(a+1)+$\frac{3}{a+1}$-3
≥2$\sqrt{(a+1)•\frac{3}{a+1}}$-3
=2$\sqrt{3}$-3,
当且仅当(a+1)2=3时“=”成立,
故$\frac{a+1}{{a}^{2}-a+1}$≤$\frac{1}{2\sqrt{3}-3}$=$\frac{{2\sqrt{3}+3}}{3}$,
故答案为:$\frac{{2\sqrt{3}+3}}{3}$.
点评 本题考查了基本不等式的性质,考查转化思想,是一道中档题.
练习册系列答案
相关题目
10.设复数z1=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,z2=3+4i,则$\frac{{|z}_{1}^{2016}|}{|\overline{{z}_{2}}|}$=( )
| A. | $\frac{2}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{1}{25}$ | D. | $\frac{1}{5}$ |
6.已知命题p:$\frac{1}{x-1}$<1,q:x2+(a-1)x-a>0,若p是q的充分不必要条件,则实数a的取值范围是( )
| A. | (-2,-1] | B. | [-2,-1] | C. | [-3,-1] | D. | [-2,+∞) |
3.已知i是虚数单位,则复数z=$\frac{4+3i}{1+2i}$的虚部为( )
| A. | -i | B. | 11 | C. | 1 | D. | -1 |
10.下列不等式一定成立的是( )
| A. | x2+$\frac{1}{4}$>x(x>0) | B. | x2+1≥2|x|(x∈R) | ||
| C. | sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z) | D. | $\frac{1}{{{x^2}+1}}$>1(x∈R) |