题目内容

1.已知函数$f(x)=Acos(x+\frac{π}{6})$,x∈R,且$f(\frac{π}{12})=\sqrt{2}$.
(Ⅰ)求A的值;
(Ⅱ)设α,β∈[0,$\frac{π}{2}$],$f(α+\frac{π}{3})$=-$\frac{24}{13}$,$f(β-\frac{π}{6})=\frac{8}{5}$,求cos(α+β)的值.

分析 (Ⅰ)由$f(\frac{π}{12})=\sqrt{2}$代入计算,利用特殊角的三角函数值即可计算得解.
(Ⅱ)由$f(α+\frac{π}{3})$=-$\frac{24}{13}$,利用诱导公式可求sin α=$\frac{12}{13}$,又α∈[0,$\frac{π}{2}$],利用同角三角函数基本关系式可求
cos α,由$f(β-\frac{π}{6})$=$\frac{8}{5}$,得$cosβ=\frac{4}{5}$,结合范围β∈[0,$\frac{π}{2}$],利用同角三角函数基本关系式可求$sinβ=\frac{3}{5}$,
利用两角和的余弦函数公式即可计算得解.

解答 (本小题满分12分)
解:(Ⅰ)因为$f(\frac{π}{12})=Acos(\frac{π}{12}+\frac{π}{6})=Acos\frac{π}{4}=\sqrt{2}$,
所以A=2.…(4分)
(Ⅱ)由$f(α+\frac{π}{3})$=2cos(α+$\frac{π}{3}$+$\frac{π}{6}$)=2cos(α+$\frac{π}{2}$)=-2sin α=-$\frac{24}{13}$,得sin α=$\frac{12}{13}$,
又α∈[0,$\frac{π}{2}$],
所以cos α=$\frac{5}{13}$.…(8分)
由$f(β-\frac{π}{6})$=2cos(β-$\frac{π}{6}$+$\frac{π}{6}$)=2cos β=$\frac{8}{5}$,得$cosβ=\frac{4}{5}$,
又β∈[0,$\frac{π}{2}$],
所以$sinβ=\frac{3}{5}$.…(10分)
所以cos(α+β)=cosαcos β-sinαsinβ=$\frac{5}{13}$×$\frac{4}{5}$-$\frac{12}{13}$×$\frac{3}{5}$=-$\frac{16}{65}$.…(12分)

点评 本题主要考查了特殊角的三角函数值,诱导公式,同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网