题目内容
13.已知直线$l:x=\frac{a^2}{c}$是椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0,c=\sqrt{{a^2}-{b^2}}})$的右准线,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,右准线方程为x=2.(1)求椭圆Γ的方程;
(2)已知一直线AB过右焦点F(c,0),交椭圆Γ于A,B两点,P为椭圆Γ的左顶点,PA,PB与右准线交于点M(xM,yM),N(xN,yN),问yM•yN是否为定值,若是,求出该定值,否则说明理由.
分析 (1)由题意可知:e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{{a}^{2}}{c}$=2,即可求得a和b的值,求得椭圆Γ的方程;
(2)设AB的方程:x=my+1,代入椭圆方程由韦达定理求得直线PA的方程,代入即可求得yM=$\frac{{y}_{1}}{{x}_{1}+\sqrt{2}}$(2+$\sqrt{2}$),yN=$\frac{{y}_{2}}{{x}_{2}+\sqrt{2}}$(2+$\sqrt{2}$),yM•yN=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{({x}_{1}+\sqrt{2})({x}_{2}+\sqrt{2})}$=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{(m{y}_{1}+1+\sqrt{2})(m{y}_{2}+1+\sqrt{2})}$,代入即可求得yM•yN=-1.
解答 解:(1)依题意:椭圆的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,$\frac{{a}^{2}}{c}$=2,则a=$\sqrt{2}$,b=1,c=1,
故椭圆Γ方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$; …(4分)
(2)设AB的方程:x=my+1,A(x1,y1),B(x2,y2),
则$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:(m2+2)y2+2my-1=0,
△=(-2m)2+4(m2+2)>0,
由韦达定理得:y1+y2=-$\frac{2m}{{m}^{2}+2}$,y1•y2=-$\frac{1}{{m}^{2}+2}$,…(6分)
直线PA:y=$\frac{{y}_{1}-0}{{x}_{1}+\sqrt{2}}$(x+$\sqrt{2}$),
令x=2,得yM=$\frac{{y}_{1}}{{x}_{1}+\sqrt{2}}$(2+$\sqrt{2}$),
同理:yN=$\frac{{y}_{2}}{{x}_{2}+\sqrt{2}}$(2+$\sqrt{2}$),…(8分)
∴yM•yN=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{({x}_{1}+\sqrt{2})({x}_{2}+\sqrt{2})}$=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{(m{y}_{1}+1+\sqrt{2})(m{y}_{2}+1+\sqrt{2})}$,
=$\frac{(2+\sqrt{2})^{2}{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+(1+\sqrt{2})m({y}_{1}+{y}_{2})+(1+\sqrt{2})^{2}}$,
=$\frac{(2+\sqrt{2})^{2}(-\frac{1}{{m}^{2}+2})}{{m}^{2}(-\frac{1}{{m}^{2}+2})+(1+\sqrt{2})m(-\frac{2m}{{m}^{2}+2})+(1+\sqrt{2})^{2}}$,
=$\frac{-(2+\sqrt{2})^{2}}{-{m}^{2}-2(1+\sqrt{2}){m}^{2}+(1+\sqrt{2})^{2}({m}^{2}+2)}$,
=$\frac{-(6+4\sqrt{2})}{2(1+\sqrt{2})^{2}}$=$\frac{-(6+4\sqrt{2})}{6+4\sqrt{2}}$=-1,
yM•yN=-1,
yM•yN是定值,定值为-1.…(12分)
点评 本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查韦达定理及直线的斜率公式,考查计算能力,属于中档题.
| A. | 2 | B. | $\sqrt{5}$ | C. | 1 | D. | $\sqrt{3}$ |
| A. | 钝角三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 不能确定 |
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
| A. | (-4,1) | B. | (0,1) | C. | (-4,5) | D. | (0,5) |