题目内容
集合A={x|1<x<3},B={x|x≤2},则A∩B=( )
| A、{x|x<3} |
| B、{x|2≤x<3} |
| C、{x|1<x≤2} |
| D、{x|1<x<2} |
考点:交集及其运算
专题:集合
分析:根据集合的基本运算,即可求A∩B.
解答:
解:∵A={x|1<x<3},B={x|x≤2},
∴A∩B={x|1<x≤2},
故选:C.
∴A∩B={x|1<x≤2},
故选:C.
点评:本题主要考查集合的基本运算,比较基础.
练习册系列答案
相关题目
已知直线m、n,平面α、β,给出下列命题:其中正确的命题是( )
①若m⊥α,n⊥β,且m⊥n,则α⊥β
②若m∥α,n∥β,且m∥n,则α∥β
③若m⊥α,n∥β,且m⊥n,则α⊥β
④若m⊥α,n∥β,且m∥n,则α⊥β
①若m⊥α,n⊥β,且m⊥n,则α⊥β
②若m∥α,n∥β,且m∥n,则α∥β
③若m⊥α,n∥β,且m⊥n,则α⊥β
④若m⊥α,n∥β,且m∥n,则α⊥β
| A、①③ | B、②④ | C、③④ | D、①④ |
已知不等式x+3≥0的解集是A,则使得a∈A是假命题的a的取值范围是( )
| A、a≥-3 | B、a>-3 |
| C、a≤-3 | D、a<-3 |
| A、正方形 | B、矩形 |
| C、菱形 | D、一般的平行四边形 |
在△ABC中,如果a,b,c分别是角A,B,C的对边,设命题p:(a2+b2)sin(A-B)=(a2-b2)sin(A+B);命题q:△ABC为直角三角形,那么命题p是命题q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
复数(i-1)2等于( )
| A、-2i | B、2i |
| C、2-2i | D、2+2i |