题目内容
已知y=f(x)是定义在(-∞,+∞)上的偶函数,当x≥0时,f(x)=x2-2x-3.
(1)用分段函数形式写出y=f(x)的解析式;
(2)写出y=f(x)的单调区间;
(3)求出函数的最值.
(1)用分段函数形式写出y=f(x)的解析式;
(2)写出y=f(x)的单调区间;
(3)求出函数的最值.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:(1)只需求出x<0时f(x)的表达式即可.设x<0,则-x>0,利用已知表达式可求出f(-x),再根据f(x)与f(-x)关系即可求解.
(2)当x≥0时,f(x)=x2-2x-3,对称轴为x=1,当x≤0时,f(x)=x2+2x-3,对称轴为x=-1,由此能求出f(x)的单调区间.
(3)利用抛物线的性质和分类讨论思想能求出函数的最值.
(2)当x≥0时,f(x)=x2-2x-3,对称轴为x=1,当x≤0时,f(x)=x2+2x-3,对称轴为x=-1,由此能求出f(x)的单调区间.
(3)利用抛物线的性质和分类讨论思想能求出函数的最值.
解答:
解:(1)∵y=f(x)是定义在(-∞,+∞)上的偶函数,
当x≥0时,f(x)=x2-2x-3,
∴当x<0时,设x<0,则-x>0,
∴f(x)=f(-x)=(-x)2-2(-x)-3=x2+2x-3.
即x<0时,f(x)=x2+2x-3.
故f(x)=
.
(2)当x≥0时,f(x)=x2-2x-3,
对称轴为x=1,
∴增区间为[1,+∞),减区间为[0,1];
当x≤0时,f(x)=x2+2x-3,
对称轴为x=-1,
∴增区间为[-1,0),减区间为(-∞,-1].
综上,f(x)的增区间为[-1,0),[1,+∞),减区间为(-∞,-1],[0,1].
(3)由(2)知,当x≥0时,f(x)=x2-2x-3,
f(x)min=f(1)=1-2-3=-4,无最大值;
当x≤0时,f(x)=x2+2x-3,
f(x)min=f(-1)=1-2-3=-4,无最大值.
综上,函数的最小值为-4,无最大值.
当x≥0时,f(x)=x2-2x-3,
∴当x<0时,设x<0,则-x>0,
∴f(x)=f(-x)=(-x)2-2(-x)-3=x2+2x-3.
即x<0时,f(x)=x2+2x-3.
故f(x)=
|
(2)当x≥0时,f(x)=x2-2x-3,
对称轴为x=1,
∴增区间为[1,+∞),减区间为[0,1];
当x≤0时,f(x)=x2+2x-3,
对称轴为x=-1,
∴增区间为[-1,0),减区间为(-∞,-1].
综上,f(x)的增区间为[-1,0),[1,+∞),减区间为(-∞,-1],[0,1].
(3)由(2)知,当x≥0时,f(x)=x2-2x-3,
f(x)min=f(1)=1-2-3=-4,无最大值;
当x≤0时,f(x)=x2+2x-3,
f(x)min=f(-1)=1-2-3=-4,无最大值.
综上,函数的最小值为-4,无最大值.
点评:本题考查函数的解析式、单调区间和最值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
某几何体三视图如图所示,则该几何体的体积为( )

| A、8-2π | ||
| B、8-π | ||
C、8-
| ||
D、8-
|
一辆中型客车的营运总利润y(单位:万元)与营运年数x(x∈N)的变化关系如下表所示,要使总利润达到最大值,则该客车的营运年数是( )
| x(年) | 4 | 6 | 8 | … |
| y=ax2+bx+c | 7 | 11 | 7 | … |
| A、15 | B、10 | C、9 | D、6 |
若正实数x,y满足x+y=2,则
的最小值为( )
| 1 |
| xy |
| A、1 | B、2 | C、3 | D、4 |