题目内容

已知三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)若λ=
1
2
,求四棱锥B-CDFE的体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(I)要证不论λ为何值,总有EF⊥平面ABC,只需证CD⊥平面ABC,在△BCD中,根据∠BCD=90°得证.
(II)根据V三棱锥A-BEF=V三棱锥F-ABE,得出体积即可.
解答: 证明:(Ⅰ)∵AB⊥平面BCD,
∴AB⊥CD,…(2分)
∵CD⊥BC,且AB∩BC=B,
∴CD⊥平面ABC,…(4分)
又∵
AE
AC
=
AF
AD
(0<λ<1),
∴不论λ为何值,恒有EF∥CD,
∴EF⊥平面ABC,EF?平面BEF,
∴不论λ为何值恒有平面BEF⊥平面ABC.…(6分)
(Ⅱ)∵BC=CD=1,∠BCD=90°,∠ADB=60°,
BD=
2
,AB=
2
tan60°=
6

∴VA-BCD=
1
3
S△BCD•AB=
1
3
×
1
2
×
6
=
6
6
            …(8分)
∵λ=
1
2
,∴E为AC的中点,又EF⊥平面ABC
VB-AFE=
1
3
S△ABE•EF=
1
6
S△ABC•EF=
1
6
×
1
2
×1×
6
×
1
2
=
6
24
    …(10分)
∴VB-CDFE=VA-BCD-VB-AFE=
6
8
                  …(12分)
点评:本题考查考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网