题目内容
化简
的结果是( )
| 1-sin260° |
| A、cos60° |
| B、-cos60° |
| C、±cos60° |
| D、±|cos60°| |
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:原式被开方数利用同角三角函数间基本关系化简,再利用二次函数的性质计算即可得到结果.
解答:
解:∵cos60°=
>0,
∴原式=
=|cos60°|=cos60°,
故选:A.
| 1 |
| 2 |
∴原式=
| cos260° |
故选:A.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
若x5+3x3+1=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5对任意实数x都成立,则a3的值是( )
| A、13 | B、10 | C、3 | D、1 |
函数f(x)=sin(wx+φ)(w>0,|φ|<
)的最小正周期是π,若将该函数的图象向右平移
个单位后得到的图象关于直线x=
对称,则函数f(x)的解析式为( )
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
A、f(x)=sin(2x+
| ||
B、f(x)=sin(2x-
| ||
C、f(x)=sin(2x+
| ||
D、f(x)=sin(2x-
|
圆(x+
)2+(y+1)2=
与圆(x-sinθ)2+(y-1)2=
(θ为锐角)的位置关系是( )
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 16 |
| A、相离 | B、外切 | C、内切 | D、相交 |
已知直线2x-y+4=0过椭圆C:
+
=1(m>0)的一个焦点,则椭圆C的长轴长为( )
| x2 |
| m |
| y2 |
| 2 |
A、2
| ||
| B、2 | ||
C、3
| ||
| D、4 |
已知f(x)=x3-3x,则函数h(x)=f[f(x)]的零点个数是( )
| A、3 | B、5 | C、7 | D、9 |
在△ABC中,A:B:C=1:2:3,则sinA:sinB:sinC=( )
| A、1:2:3 | ||||
B、1:
| ||||
C、1:
| ||||
D、1:
|
已知数列{an}满足a1=2,an=nan-1(n≥2),则a5=( )
| A、240 | B、120 |
| C、60 | D、30 |