题目内容

20.已知双曲线${x^2}-\frac{y^2}{3}=1$,过P(2,0)且倾斜角为30°的直线l与双曲线相交于A,B两点
(1)写出直线l的参数方程.
(2)求|PA|+|PB|的值.

分析 (1)直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t为参数)$.
(2)易知倾斜角为30°的直线l与双曲线相交于A,B两点,A、B在异支,把直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t为参数)$.代入${x^2}-\frac{y^2}{3}=1$得:$2{t}^{2}+6\sqrt{3}t+9=0$,⇒${t}_{1}+{t}_{2}=-3\sqrt{3}$,${t}_{1}{t}_{2}=\frac{9}{2}$,|PA|+|PB|=|t1-t2|=3.

解答 解:(1)过P(2,0)且倾斜角为30°的直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t为参数)$.
(2)∵双曲线${x^2}-\frac{y^2}{3}=1$的渐近线为y=$\sqrt{3}$x,其倾斜角为600
∴倾斜角为30°的直线l与双曲线相交于A,B两点,A、B在异支.
把直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.(t为参数)$.代入${x^2}-\frac{y^2}{3}=1$得:
$2{t}^{2}+6\sqrt{3}t+9=0$,⇒${t}_{1}+{t}_{2}=-3\sqrt{3}$,${t}_{1}{t}_{2}=\frac{9}{2}$,
$({t}_{1}-{t}_{2})^{2}=({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}$=(-3$\sqrt{3})^{2}$2-4×$\frac{9}{2}=9$.
|PA|+|PB|=|t1-t2|=3.

点评 本题考查了直线的参数方程,直线与双曲线的位置关系,解题时要注意参数的本质含义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网