题目内容

15.随机观测生产某种们零件的某工厂20名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]20.10
(30,35]40.20
(35,40]50.25
(40,45]mfm
(45,50]nfn
(1)确定样本频率分布表中m,n,fm和fn的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取3人,至少有1人的日加工零件数落在区间(30,35]的概率.

分析 (1)利用频数定义能求出m,n,利用频率计算公式能求出fm,fn
(2)由频率分布直方图,能画出频率分布列图.
(3)根据题意ξ~B(3,0.2),由此能求出至少有1人的日加工零件数落在区间(30,35]的概率.

解答 解:(1)∵20名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.
∴(40,50]区间内的频数m=6,(45,50]区间内的频数n=3,
∴fm=$\frac{6}{20}$=0.3,fn=$\frac{3}{20}$=0.15.
(2)由频率分布直方图,画出频率分布列如下图:
(3)根据样本频率分布直方图,每人的日加工零件数落在区间(30,35]的频率为0.2,
设所取的3人中,日加工零件数落在区间(30,35]的人数为ξ,则ξ~B(3,0.2),
P(ξ≥1)=1-P(ξ=0)=1-(1-0.2)3=0.488.
∴至少有1人的日加工零件数落在区间(30,35]的概率为0.488.

点评 本题考查频率分布直方图、频率分布表的性质及应用,考查概率的求法,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网