题目内容

20.设函数f(x)=x2+mx+n2,g(x)=x2+(m+2)x+n2+m+1,其中n∈R,若对任意的n,t∈R,f(t)和g(t)至少有一个为非负值,则实数m的最大值是(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 作差g(t)-f(t)=2t+m+1,从而可知t≥-$\frac{m+1}{2}$时g(t)≥f(t),从而化为g(t)=t2+(m+2)t+n2+m+1在t≥-$\frac{m+1}{2}$时g(t)min=(-$\frac{m+1}{2}$+$\frac{m+2}{2}$)2+n2+m+1-$\frac{(m+2)^{2}}{4}$≥0恒成立,从而可得|m|≤1;从而结合选项解得.

解答 解:∵g(t)-f(t)=t2+(m+2)t+n2+m+1-(t2+mt+n2)=2t+m+1,
∴当2t+m+1≥0,即t≥-$\frac{m+1}{2}$时,g(t)≥f(t),
而g(t)=t2+(m+2)t+n2+m+1=(t+$\frac{m+2}{2}$)2+n2+m+1-$\frac{(m+2)^{2}}{4}$,
∵-$\frac{m+1}{2}$>-$\frac{m+2}{2}$,
∴g(t)min=(-$\frac{m+1}{2}$+$\frac{m+2}{2}$)2+n2+m+1-$\frac{(m+2)^{2}}{4}$≥0恒成立,
即m2≤1+4n2恒成立,
故|m|≤1;
结合选项可知,A正确;
故选:A.

点评 本题考查了分类讨论的思想应用及作差法的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网