题目内容

9.设函数f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,a∈R.
(I)若函数f(x)在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$,求ω的值;
(Ⅱ)在(I)的条件下,若f(x)在区间[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值为$\frac{\sqrt{3}+1}{2}$,求实数a的值;
(Ⅲ)若函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,求实数ω的取值范围.

分析 (I)由题意可得2ω•$\frac{π}{6}$+$\frac{π}{3}$=$\frac{π}{2}$,求得ω的值.
(Ⅱ)在(I)的条件下,x+$\frac{π}{3}$∈[0,$\frac{7π}{6}$],可得函数的最小值为-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$+a=$\frac{\sqrt{3}+1}{2}$,由此可得a的值.
(Ⅲ)由函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,可得$\left\{\begin{array}{l}{-\frac{π}{2}≤2ω•(-\frac{π}{4})+\frac{π}{3}}\\{2ω•\frac{π}{2}+\frac{π}{3}≤\frac{π}{2}}\end{array}\right.$,由此求得ω 的范围.

解答 解:(I)∵函数f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,
函数f(x)在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$,∴2ω•$\frac{π}{6}$+$\frac{π}{3}$=$\frac{π}{2}$,求得ω=$\frac{1}{2}$.
(Ⅱ)在(I)的条件下,f(x)=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,
 在区间[-$\frac{π}{3}$,$\frac{5π}{6}$]上,x+$\frac{π}{3}$∈[0,$\frac{7π}{6}$],故函数的最小值为-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$+a=$\frac{\sqrt{3}+1}{2}$,∴a=1.
(Ⅲ)若函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,则$\left\{\begin{array}{l}{-\frac{π}{2}≤2ω•(-\frac{π}{4})+\frac{π}{3}}\\{2ω•\frac{π}{2}+\frac{π}{3}≤\frac{π}{2}}\end{array}\right.$,
求得ω≤$\frac{1}{6}$.

点评 本题主要考查正弦函数的图象特征,正弦函数的定义域和值域,正弦函数的单调性,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网