题目内容
5.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+2y的最小值为( )| A. | -3 | B. | -5 | C. | -6 | D. | -14 |
分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.
解答
解:作出不等式组对应的平面区域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直线y=$-\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线经过点B时,
直线y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,
即B(3,-3)
此时z=3+2×(-3)=3-6=-3.
故选:A.
点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.
练习册系列答案
相关题目
15.2015年十一黄金周期间,渭南日报记者通过随机询问本市华山景区220名游客对景区的服务是否满意情况,得到如下的统计表:(单位:名)
(Ⅰ)从这100名女游客中按对华山景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(Ⅱ)从(Ⅰ)中的5名女游客样本中随机选取两名作深度访谈,求选出满意与不满意的女游客一名的概率;
(Ⅲ)根据以上统计表,问有多大把握认为“游客性别与对华山景区的服务满意”有关.
附:
K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
| 男 | 女 | 总计 | |
| 满意 | 100 | 60 | 160 |
| 不满意 | 20 | 40 | 60 |
| 总计 | 120 | 100 | 220 |
(Ⅱ)从(Ⅰ)中的5名女游客样本中随机选取两名作深度访谈,求选出满意与不满意的女游客一名的概率;
(Ⅲ)根据以上统计表,问有多大把握认为“游客性别与对华山景区的服务满意”有关.
附:
| P(K2≥K0) | 0.050 | 0.025 | 0.010 |
| K0 | 3.841 | 5.024 | 6.635 |