题目内容

20.已知函数f(x)=(sinx+cosx)2+2cos2x.
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

分析 (Ⅰ)化函数f(x)为正弦型函数,即可求出f(x)的最小正周期;
(Ⅱ)由0≤x≤$\frac{π}{2}$求出2x+$\frac{π}{4}$的取值范围,再根据正弦函数的图象与性质即可求出f(x)的最值.

解答 解:(Ⅰ)f(x)=(sinx+cosx)2+2cos2x
=sin2x+2sinxcosx+cos2x+2cos2x
=1+sin2x+1+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+2,…(4分)
所以f(x)的最小正周期为T=π;…(6分)
(Ⅱ)由0≤x≤$\frac{π}{2}$得,
0≤2x≤π,
所以$\frac{π}{4}$≤2 x+$\frac{π}{4}$≤$\frac{5π}{4}$;…(8分)
根据正弦函数y=sinx的图象可知
当$x=\frac{π}{8}$时,f(x)有最大值为2+$\sqrt{2}$,…(11分)
当$x=\frac{π}{2}$时,f(x)有最小值为1.…(13分)

点评 本题考查了三角函数的化简以及三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网