ÌâÄ¿ÄÚÈÝ
10£®Ä³µ÷²éÕß´Óµ÷²éÖлñ֪ij¹«Ë¾½üÄêÀ´¿ÆÑзÑÖ§³ö£¨xi£© ÓÃÓ빫˾Ëù»ñµÃÀûÈó£¨yi£©µÄͳ¼Æ×ÊÁÏÈç±í£º¿ÆÑзÑÓÃÖ§³ö£¨xi£©ÓëÀûÈó£¨yi£©Í³¼Æ±í µ¥Î»£ºÍòÔª
| Äê·Ý | ¿ÆÑзÑÓÃÖ§³ö£¨xi£© | ÀûÈó£¨yi£© |
| 2011 2012 2013 2014 2015 2016 | 5 11 4 5 3 2 | 31 40 30 34 25 20 |
| ºÏ¼Æ | 30 | 180 |
£¨2£©µ±x=xiʱ£¬ÓɻعéÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$µÃµ½µÄº¯ÊýÖµ¼ÇΪ$\stackrel{¡Ä}{{y}_{i}}$£¬ÎÒÃǽ«¦Å=|$\stackrel{¡Ä}{{y}_{i}}$-yi|³ÆÎªÎó²î£»
ÔÚ±íÖÐ6×éÊý¾ÝÖÐÈÎÈ¡Á½×éÊý¾Ý£¬ÇóÁ½×éÊý¾ÝÖÐÖÁÉÙÓÐÒ»×éÊý¾ÝÎó²îСÓÚ3µÄ¸ÅÂÊ£»
²Î¿¼¹«Ê½£ºÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻع鷽³ÌµÄϵÊý¹«Ê½£º
$\stackrel{¡Ä}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{£¨\overline x£©}^2}}}}$=$\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-}\overline y£©}}{{\sum_{i=1}^n{{{£¨x_i^{\;}-\overline x£©}^2}}}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®
·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄÊý¾Ý£¬ÀûÓÃ×îС¶þ³Ë·¨ÐèÒªµÄ6¸öÊý¾Ý£¬ºá±êºÍ×ݱêµÄƽ¾ùÊý£¬ºá±êºÍ×ݱêµÄ»ýµÄºÍ£¬Óëºá±êµÄƽ·½ºÍ£¬´úÈ빫ʽÇó³öbµÄÖµ£¬ÔÙÇó³öaµÄÖµ£¬Ð´³öÏßÐԻع鷽³Ì£®
£¨2£©ÁоٳöËùÓеĻù±¾Ê¼þÔÙÇó³öÂú×ãÌõ¼þµÄʼþµÄ¸öÊý£¬×÷É̼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃÈçϱí¸ñ
| ÐòºÅ | xi | yi | xi•yi | xi2 |
| 1 | 5 | 31 | 155 | 25 |
| 2 | 11 | 40 | 440 | 121 |
| 3 | 4 | 30 | 120 | 16 |
| 4 | 5 | 34 | 170 | 25 |
| 5 | 3 | 25 | 75 | 9 |
| 6 | 2 | 20 | 40 | 4 |
| $\overline{{x}_{i}}$=5 | $\overline{{y}_{i}}$=30 | $\sum_{i=1}^{6}$xi•yi=1000 | $\sum_{i=1}^{6}$xi2=200 |
¡à»Ø¹é·½³ÌÊÇ£º$\widehat{y}$=2x+20¡£¨6·Ö£©
£¨2£©¸÷×éÊý¾Ý¶ÔÓ¦µÄÎó²îÈçÏÂ±í£º
| ÐòºÅ | xi | yi | $\widehat{{y}_{i}}$ | ¦Å |
| 1 | 5 | 31 | 30 | 1 |
| 2 | 11 | 40 | 42 | 2 |
| 3 | 4 | 30 | 28 | 2 |
| 4 | 5 | 34 | 30 | 4 |
| 5 | 3 | 25 | 26 | 1 |
| 6 | 2 | 20 | 24 | 4 |
¦¸={£¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨1£¬5£©£¬£¨1£¬6£©£¬£¨2£¬3£©£¬£¨2£¬4£©£¬£¨2£¬5£©£¬£¨2£¬6£©£¬£¨3£¬4£©£¬£¨3£¬5£©£¬£¨3£¬6£©£¬£¨4£¬5£©£¬£¨4£¬6£©£¬£¨5£¬6£©}
¹²15¸ö»ù±¾Ê¼þ
ʼþ¡°ÖÁÉÙÓÐÒ»×éÊý¾ÝÓë»Ø¹éÖ±Ïß·½³ÌÇóµÃµÄÊý¾ÝÎó²îСÓÚ3¡±°üº¬µÄ»ù±¾Ê¼þÓУº£¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨1£¬5£©£¬£¨1£¬6£©£¬£¨2£¬3£©£¬£¨2£¬4£©£¬£¨2£¬5£©£¬£¨2£¬6£©£¬£¨3£¬4£©£¬£¨3£¬5£©£¬£¨3£¬6£©£¬£¨4£¬5£©£¬£¨5£¬6£©£¬¹²14¸ö»ù±¾Ê¼þ
¡àP=$\frac{14}{15}$
¼´ÔÚ±íÖÐ6×éÊý¾ÝÖÐÈÎÈ¡Á½×éÊý¾Ý£¬Á½×éÊý¾ÝÖÐÖÁÉÙÓÐÒ»×éÊý¾ÝÓë»Ø¹éÖ±Ïß·½³ÌÇóµÃµÄÊý¾ÝÎó²îСÓÚ3µÄ¸ÅÂÊΪ$\frac{14}{15}$£»¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÏßÐԻعé·ÖÎöµÄÓ¦Ó㬱¾Ìâ½âÌâµÄ¹Ø¼üÊÇÀûÓÃ×îС¶þ³Ë·¨ÈÏÕæ×ö³öÏßÐԻع鷽³ÌµÄϵÊý£¬ÕâÊÇÕû¸öÌâÄ¿×ö¶ÔµÄ±Ø±¸Ìõ¼þ£¬±¾ÌâÊÇÒ»¸öÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÒÑÖª¦ÁÊǵڶþÏóÏ޽ǣ¬ÇÒsin¦Á=$\frac{3}{5}$£¬Ôòcos£¨¦Ð-¦Á£©=£¨¡¡¡¡£©
| A£® | $\frac{4}{5}$ | B£® | -$\frac{4}{5}$ | C£® | $\frac{3}{5}$ | D£® | -$\frac{3}{5}$ |
1£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-6ax-1£¬x¡Ü1}\\{{a}^{x}-7£¬x£¾1}\end{array}\right.$£¬¶ÔÈÎÒâx1¡Ùx2£¬¶¼ÓÐ$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨$\frac{1}{3}$£¬1£© | B£® | [$\frac{1}{3}$£¬1£© | C£® | £¨0£¬$\frac{1}{3}$£© | D£® | £¨0£¬$\frac{1}{3}$] |
5£®¸´Êýz=$\frac{3+2i}{i}$ £¨iΪÐéÊýµ¥Î»£©µÄÐ鲿Ϊ£¨¡¡¡¡£©
| A£® | 3 | B£® | -3 | C£® | -3i | D£® | 2 |