题目内容
考点:归纳推理
专题:计算题,推理和证明
分析:根据图象的规律可得相邻两项的差的规律可分析得出f(n)-f(n-1)=6(n-1),进而根据合并求和的方法求得f(n)的表达式,即可求出f(10).
解答:
解:由于f(2)-f(1)=7-1=6,
f(3)-f(2)=19-7=2×6,
f(4)-f(3)=37-19=3×6,
f(5)-f(4)=61-37=4×6,…
因此,当n≥2时,有f(n)-f(n-1)=6(n-1),
所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.
又f(1)=1=3×12-3×1+1,所以f(n)=3n2-3n+1,
所以f(10)=271.
故答案为:271
f(3)-f(2)=19-7=2×6,
f(4)-f(3)=37-19=3×6,
f(5)-f(4)=61-37=4×6,…
因此,当n≥2时,有f(n)-f(n-1)=6(n-1),
所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.
又f(1)=1=3×12-3×1+1,所以f(n)=3n2-3n+1,
所以f(10)=271.
故答案为:271
点评:本题主要考查了数列的问题、归纳推理.属于基础题.
练习册系列答案
相关题目
从1,2,3,4,5 这5个数字中,任取两数,其中一个数为奇数,另一个数为偶数的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
函数y=
的图象大致是( )
| x2 |
| 2x-1 |
| A、 |
| B、 |
| C、 |
| D、 |
不等式组
所表示的平面区域是( )
|
| A、 |
| B、 |
| C、 |
| D、 |
已知向量
=(2,1),
=(1,-2),则
与
的夹角大小为( )
| a |
| b |
| a |
| b |
| A、0° | B、45° |
| C、90° | D、180° |